Skip to main content

New Tool Aims to Improve Medication Treatment Plans for Pediatric Cancer Patients

Sophia Friesen and Avery Shrader

Many medical treatments are designed for the average patient. But everyone is different, and understanding those differences can make a critical difference in cancer care. Precision medicine looks at variables such as genes, environments, and history to create the most effective treatment plans for patients.

That’s why Jonathan Constance, PhD, associate member at Huntsman Cancer Institute in the Cell Response & Regulation Program and assistant professor of clinical pharmacology at University of Utah Health, has established a pharmacology platform to better understand how medications can be used more safely and effectively in different patient populations, especially pediatric cancer patients. 

“There are many critical knowledge gaps related to how drugs move or act,” Constance says. “The majority of drugs prescribed to children with cancer lack dosing information specific to these patients. This urgent, unmet public health need results in off-label prescribing and puts these patients at risk.” Constance and his team focus on understanding factors that influence drug movement in the body, identifying early markers of drug toxicity and investigating the potential for drug-chemotherapy interactions.

Constance explains that drug dynamics in the body can be profoundly influenced by age, cancer type, and other medications. However, for most of the drugs used to treat children with cancer, population-specific data about drug movement is sparse. This prompted his team to develop a digital pharmacology platform that can be used to assess drug dynamics directly among children with cancer.

The platform is a data visualization and analysis tool that connects to a hospital’s electronic medical records to help identify blood draws that may qualify for further analysis. When a blood draw is taken that matches the researchers’ specifications, they can analyze it to help answer questions about how different drugs interact, how they impact patients with different conditions, and how long different medications stay in the blood. 

“In this way,” Constance explains, “we can better understand the underlying issues concerning drug safety and efficacy, and importantly, have the data that can support optimization of drug use.”

By integrating “real-world” drug or biomarker concentration data with patient health records, researchers can perform detailed individual and population-specific studies for drug safety and efficacy. Constance has used the pharmacology platform to conduct diverse childhood cancer studies.

“You really need population-specific information to understand what’s happening with the drug once the patient receives it,” Constance says.

Gloved hands pointing at a blood sample in a vial.
Constance's tool helps identify blood draws that can help researchers answer questions about how drugs act in the body.

While the digital tool his team created has been essential to his own discoveries, Constance adds that it could help answer many other critical questions in cancer care, like how to best preserve patients’ reproductive health.

“Being able to create a unique plan for each patient is the future of cancer care,” Constance says. “We are just getting started. We hope this platform will be able to aid clinicians in creating personalized treatment plans for their patients.”

"We are ushering in a new era as we research ways to make cancer treatment more precise and personalized,” says Neli Ulrich, PhD, MS, chief scientific officer and executive director of the Comprehensive Cancer Center and Jon M. and Karen Huntsman Presidential Professor in Cancer Research at the University of Utah.

In acknowledgement of his groundbreaking work, Constance earned prestigious recognition at the Clinical and Translational Science Awards (CTSA) program meeting supported by the National Center for Advancing Translational Science (NCATS). The CTSA conference brought together researchers from across the nation to showcase their work using real-world data and artificial intelligence.

University of Utah’s Clinical and Translational Science Institute (CTSI) was established through the National Institutes of Health Clinical and Translational Science Awards CTSA Program. As a recipient of a CTSI/Primary Children’s Hospital Foundation (PCHF) award, Constance was selected to present his work at the national conference, where judges awarded his poster the top score. Constance says one of the most valuable experiences at the conference was a chance meeting with a leader in the field of drug toxicity biomarkers, who is now a part of the team.

In the end, it is all about finding the correct medication, in the correct dosage, for the correct amount of time. With this tool, researchers like Constance can help find a precise treatment plan for children with cancer. 

 

About Huntsman Cancer Institute at the University of Utah

Huntsman Cancer Institute at the University of Utah (the U) is the National Cancer Institute-designated Comprehensive Cancer Center for Utah, Idaho, Montana, Nevada, and Wyoming. With a legacy of innovative cancer research, groundbreaking discoveries, and world-class patient care, we are transforming the way cancer is understood, prevented, diagnosed, treated, and survived. Huntsman Cancer Institute focuses on delivering a cancer-free frontier to all communities in the area we serve. We have more than 300 open clinical trials and 250 research teams studying cancer at any given time. More genes for inherited cancers have been discovered at Huntsman Cancer Institute than at any other cancer center. Our scientists are world-renowned for understanding how cancer begins and using that knowledge to develop innovative approaches to treat each patient’s unique disease. Huntsman Cancer Institute was founded by Jon M. and Karen Huntsman.  

About NCATS

The National Center for Advancing Translational Sciences (NCATS) conducts and supports research on the science and operation of translation—the process by which interventions to improve health are developed and implemented—to allow more treatments to get to more patients more quickly. It is part of the National Institutes of Health (NIH).

About CTSI

The Utah Clinical & Translational Science Institute (CTSI) develops and applies generalizable and reproducible translational science innovations to increase the efficiency and effectiveness of research, and ultimately improve the health of our population—reducing health disparities and increasing equity. Utah CTSI serves researchers, participants, community stakeholders, and providers across our institutions, the state of Utah, and the Mountain West region.