Huntsman Cancer Institute Ullman Lab

Publications

View all Ullman KS publications in the NIH PubMed Database


Systematic Discovery of Short Linear Motifs Decodes Calcineurin Phosphatase Signaling.
Wigington CP, Roy J, Damle NP, Yadav VK, Blikstad C, Resch E, Wong CJ, Mackay DR, Wang JT, Krystkowiak I, Bradburn DA, Tsekitsidou E, Hong SH, Kaderali MA, Xu SL, Stearns T, Gingras AC, Ullman KS, Ivarsson Y, Davey NE, Cyert MS. (2020)
Molecular Cell, 79:342-358


LEM2 phase separation promotes ESCRT-mediated nuclear envelope reformation.
von Appen A, LaJoie D, Johnson IE, Trnka MJ, Pick SM, Burlingame AL, Ullman KS*, Frost A*. equal contributions *corresponding authors (2020)
Nature, 582:115-118


Mechanical stress triggers nuclear remodeling and the formation of transmembrane actin nuclear lines with associated nuclear pore complexes.
Hoffman LM, Smith MA, Jensen CC, Yoshigi M, Blankman E, Ullman KS, Beckerle MC. (2020)
Mol Biol of the Cell. 31:1774-1787


A cancer-associated polymorphism in ESCRT-III disrupts the abscission checkpoint and promotes genome instability.
Sadler JBA, Wenzel DM, Williams LK, Guindo-Martínez M, Alam SL, Mercader JM, Torrents D, Ullman KS, Sundquist WI, Martin-Serrano J.(2018).
PNAS, 115:E8900-E8908


Nup153 and Nup50 promote recruitment of 53BP1 to DNA repair foci by antagonizing BRCA1-dependent events.
Mackay DR, Howa AC, Werner TL, Ullman KS. (2017)
J Cell Sci., 130:3347-3359


Lem2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells.
Gu M, LaJoie D, Allen OS, von Appen A, Ladinsky MS, Redd MJ, Nikolova L, Bjorkman PJ, Sundquist WI*, Ullman KS*, and Frost A*.   *corresponding authors (2017)
PNAS, 114:E2166-E2175.


Coordinated events of Nuclear Assembly.
LaJoie, D and Ullman, KS (2017).
Current Opinion in Cell Biology, 46:39-45.


Dual colorimetric and fluorogenic probes for visualizing tyrosine phosphatase activity.
Biswas S, McCullough BS, Ma ES, LaJoie D, Russell CW, Garrett Brown D, Round JL, Ullman KS, Mulvey MA, Barrios AM (2017).
Chem Commun 53:2233-36.


Locking down the core of the pore.
Ullman, KS and Powers, MA (2015).
Science, 350:33-34.


An ESCRT to seal the envelope.
Sundquist, WI and Ullman, KS (2015).
Science, 348:1314-1315.


ATR and a Chk1-Aurora B pathway coordinate post-mitotic genome surveillance with cytokinetic abscission.
Mackay, DR and Ullman, KS (2015).
Mol. Biol. Of the Cell, 26:2217-26.


shRNA library screening identifies nucleocytoplasmic transport as a mediator of BCR-ABL1 kinase-independent resistance.
Khorashad, JS, Eiring AE, Mason, CC, Gantz, KC, Bowler, A, Redwine, H, Kraft, IL, Pomicter, AD, Reynolds, KR, Iovino, AJ, Zabriskie, MS, Heaton, WL, Tantravahi, SK, Kauffman, M, Bonneau, K, Ullman, KS, O’Hare, T, and Deininger, MW. (2015).
Blood, 125:1772-81.


Enhanced arginine methylation of programmed cell death 4 protein during nutrient deprivation promotes tumor cell viability.
Fay MM, Clegg JM, Uchida KA, Powers MA, Ullman KS. (2014).
J Biol Chem. 20;289(25):17541-52.


The SUMO proteases SENP1 and SENP2 play a critical role in nucleoporin homeostasis and nuclear pore complex function.
Chow KH, Elgort S, Dasso M, Powers MA, Ullman KS. (2014).
Mol Biol Cell 25(1):160-8.


A time-lapse imaging assay to study nuclear envelope breakdown.
Shankaran SS, Mackay DR, Ullman KS. (2013).
Methods Mol Biol 931:111-22.


The Nup153-Nup50 protein interface and its role in nuclear import.
Makise M, Mackay DR, Elgort S, Shankaran SS, Adam SA, Ullman KS. (2012).
J Biol Chem 287(46):38515-22.


Two distinct sites in Nup153 mediate interaction with the SUMO proteases SENP1 and SENP2.
Chow KH, Elgort S, Dasso M, Ullman KS. (2012).
Nucleus 3(4):349-58.


The nuclear envelope environment and its cancer connections.
Chow KH, Factor RE, Ullman KS. (2012).
Nat Rev Cancer 12(3):196-209.


Coordinating postmitotic nuclear pore complex assembly with abscission timing.
Mackay DR, Ullman KS. (2011).
Nucleus 2(4):283-8.


Protein arginine methyltransferase 5 accelerates tumor growth by arginine methylation of the tumor suppressor programmed cell death 4.
Powers MA1, Fay MM1, Factor RE, Welm AL2, Ullman KS2. (2011).
Cancer Res 71(16):5579-87. [1,2 equal contribution]


Defects in nuclear pore assembly lead to activation of an Aurora B-mediated abscission checkpoint.
Mackay DR*, Makise M*, Ullman KS. (2010).
J Cell Biol 191(5):923-31. [* Contributed equally]


Time-lapse imaging of mitosis after siRNA transfection.
Mackay DR, Ullman KS, Rodesch CK. (2010).
J Vis Exp (40). pii: 1878.


The nucleoporin Nup153 has separable roles in both early mitotic progression and the resolution of mitosis.
Mackay DR, Elgort SW, Ullman KS. (2009).
Mol Biol Cell 20(6):1652-60.


Biology and biophysics of the nuclear pore complex and its components.
Lim RY, Ullman KS, Fahrenkrog B. (2008).
Int Rev Cell Mol Biol 267:299-342.


Analysis of RNA export using Xenopus oocytes.
Duricka D, Ullman KS. (2001).
Curr Protoc Cell Biol 11.14.1–11.14.13. Ed. J.S. Bonifacino, M. Dasso, J.B. Harford, J. Lippincott-Schwartz, and K.M. Yamada, New York: John Wiley & Sons.


Molecular characterization of the Ran-binding zinc finger domain of Nup153.
Higa MM, Alam SL, Sundquist WI, Ullman KS. (2007).
J Biol Chem 282(23):17090-100.


Sequence preference in RNA recognition by the nucleoporin Nup153.
Ball JR*, Dimaano C*, Bilak A, Kurchan E, Zundel MT, Ullman KS. (2007).
J Biol Chem 282(12):8734-40. [*These authors contributed equally]


Changes in nucleoporin domain topology in response to chemical effectors.
Paulillo SM, Powers MA, Ullman KS, Fahrenkrog B. (2006).
J Mol Biol 363(1):39-50.


Studying nuclear disassembly in vitro using Xenopus egg extract.
Higa MM, Ullman KS, Prunuske AJ. (2006).
Methods 39(4):284-90.


The nuclear envelope: form and reformation.
Prunuske AJ, Ullman KS. (2006).
Curr Opin Cell Biol 18(1):108-16.


Nuclear envelope breakdown is coordinated by both Nup358/RanBP2 and Nup153, two nucleoporins with zinc finger modules.
Prunuske AJ, Liu J, Elgort S, Joseph J, Dasso M, Ullman KS. (2006).
Mol Biol Cell 17(2):760-9.


Versatility at the nuclear pore complex: lessons learned from the nucleoporin Nup153.
Ball JR, Ullman KS. (2005).
Chromosoma 114(5):319-30.


Nucleoporin domain topology is linked to the transport status of the nuclear pore complex.
Paulillo SM, Phillips EM, Köser J, Sauder U, Ullman KS, Powers MA, Fahrenkrog B. (2005).
J Mol Biol 351(4):784-98.


Nucleocytoplasmic transport: integrating mRNA production and turnover with export through the nuclear pore.
Dimaano C, Ullman KS. (2004)
Mol Cell Biol 24(8):3069–76.


Distinct functional domains within nucleoporins Nup153 and Nup98 mediate transcription-dependent mobility.
Griffis ER, Craige B, Dimaano C, Ullman KS, Powers MA. (2004).
Mol Biol Cell 15(4):1991–2002.


The RNA binding domain within the nucleoporin Nup153 associates preferentially with single-stranded RNA.
Ball JR, Dimaano C, Ullman KS. (2004).
RNA 10(1):19–27.


The COPI complex functions in nuclear envelope breakdown and is recruited by the nucleoporin Nup153.
Liu J, Prunuske AJ, Fager AM, Ullman KS. (2003).
Dev Cell 5(3):487–98.


Domain-specific antibodies reveal multiple-site topology of Nup153 within the nuclear pore complex.
Fahrenkrog B, Maco B, Fager AM, Köser J, Sauder U, Ullman KS, Aebi U. (2002).
J Struct Biol 140(1-3):254–67.


RNA export: searching for mRNA identity.
Ullman KS. (2002).
Curr Biol 12(13):R461-3.


Nuclear export of mammalian PERIOD proteins.
Vielhaber EL, Duricka D, Ullman KS, Virshup DM. (2001).
J Biol Chem 276(49):45921-7.


RNA association defines a functionally conserved domain in the nuclear pore protein Nup153.
Dimaano C, Ball JR, Prunuske AJ, Ullman KS. (2001).
J Biol Chem 276(48):45349-57.


The nucleoporin nup153 plays a critical role in multiple types of nuclear export.
Ullman KS, Shah S, Powers MA, Forbes DJ. (1999).
Mol Biol Cell 10(3):649-64.